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Abstract. We performed a detailed Landau expansion of the free energy for a metamagnetic model con-
sidering terms up to twelfth order. We obtained explicit expressions for the coefficients as a function of
the temperature and the ratio between ferro- and antiferromagnetic interactions. We showed that a naive
analysis based on the signs of these coefficients cannot always give us sufficient guarantee about the cor-
rectness of the phase diagram of the model. In these cases it is necessary to resort to the full expression of
the free energy in order to characterize the nature of the phase transition.

PACS. 05.70.Jk Critical point phenomena – 05.70.Fh Phase transitions: general studies

1 Introduction

Kincaid and Cohen [1] presented an extensive theoreti-
cal review work concerning the mean field properties of
the Ising metamagnetic model. They considered a two-
sublattice model with competing ferromagnetic (intrasub-
lattice) and antiferromagnetic (intersublattice) interac-
tions. They showed that depending on the value of the
ratio between these interactions the phase diagram of the
model can exhibit different types of critical points. Above
a given value of this ratio the phase diagram displays a tri-
critical behavior, while below this ratio the phase diagram
presents a critical endpoint and a bicritical endpoint. Al-
though the tricritical point is observed in all known real
metamagnets [2,3], the critical and the bicritical endpoints
have not yet been observed in any real system. Monte
Carlo simulations [4–9] and dynamical pair approxima-
tion [10] do not support the idea of a decomposition of the
tricritical point into a critical and a bicritical endpoints.
Selke [7] and Pleimling and Selke [8] showed that the spe-
cific heat and the magnetization of the layered metam-
agnets can exhibit some anomalies, but this fact was not
sufficient to guarantee that the above cited decomposition
of the tricritical point takes place. The anomalies are en-
hanced for very small values of the intralayer coupling and
high coordinated interlayer coupling. However, the decom-
position of the tricritical point is present both in mean-
field and Monte Carlo simulations for other systems, such
as in the three-dimensional Blume-Capel model [11].

In this paper we revisit the Ising metamagnetic model,
but our interest now is to investigate the behavior of its
Landau coefficients as a function of the temperature, mag-
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netic field, and the ratio between ferro- and antiferromag-
netic couplings. As it is well known the basic idea of the
Landau theory of the continuous phase transitions is that
at the transition point the order parameter of the system
changes continuously from one phase to the other. In their
work Kincaid and Cohen [1] performed a Landau expan-
sion of the free energy for the Ising metamagnetic model,
and by a careful analysis of the signs of the coefficients
in the expansion foresaw the possibility of different phase
diagrams, as exposed above. As we will show next, for
suitable values of the ratio between the ferro- and antifer-
romagnetic couplings, a bicritical endpoint that would be
expected in the phase diagram based only on the signs of
Landau coefficients, is not really present.

In the next section we present the model for the lay-
ered metamagnet, the exact free-energy for the Curie-
Weiss version of the model system, and perform the cor-
responding Landau expansion. Our approach is somewhat
different but results previously derived by Kincaid and
Cohen [1] are reproduced for clarity. In Section 3 we
present the phase diagram and calculate the critical points
of the model. Finally, in Section 4, we present our conclu-
sions.

2 Model

We have considered an Ising spin system on a cubic lat-
tice, formed by two sublattices. The sublattices are chosen
to be the alternating layers of the lattice. The exchange
interaction between first neighboring spins on the same
sublattice is of the ferromagnetic type, while the coupling
between neighboring spins belonging to different sublat-
tices is of the antiferromagnetic type. The Hamiltonian of
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the model is

H = −1
2

∑
i,j

σi Jij σj −
∑
i

Hi σi , (1)

where the first sum is over all pairs of nearest neigh-
bors and σi = ±1. We choose Jij = JF > 0 for
spins interacting ferromagnetically inside the planes, and
Jij = −JA < 0 for spins interacting antiferromagnetically
between adjacent planes. The second sum in equation (1)
represents the interaction of the spins with the magnetic
field. We considered two types of fields: the physical one,
H, which is the same for all the lattice sites, and a stag-
gered magnetic field of intensity Hs, which is directed up
on one sublattice and down on the other. Let us intro-
duce the sublattice magnetizations mA and mB. The total
magnetization m and the staggered magnetization ms are
defined by

m =
mA +mB

2
, ms =

mA −mB

2
· (2)

In the last equation the staggered magnetization ms is
the order parameter that is conjugate to the staggered
field Hs. For the Curie-Weiss version of Hamiltonian (1),
in which each spin interacts with all the others in the
system, we can write the exact following expression for
the Helmholtz free energy:

f (m,ms, T ) = −J−
2
m2 − J+

2
m2
s

+
1

4 β
[ (1 +m+ms) ln(1 +m+ms)

+ (1 +m−ms) ln(1 +m−ms)
+ (1−m+ms) ln(1−m+ms)
+ (1−m−ms) ln(1−m−ms) ], (3)

where β = 1/kBT , kB is the Boltzmann constant and T is
the absolute temperature. Under this approach, the lay-
ered and next nearest neighbour antiferromagnets become
indistinguishable. We have also defined the new variables
J− = JF − JA and J+ = JF + JA. From this expression
we obtain the field equations:

Hs =
∂f

∂ms
= −J+ms+

1
4β

ln
(1+m+ms)(1−m+ms)
(1+m−ms)(1−m−ms)

,

(4)

H =
∂f

∂m
= −J−m+

1
4β

ln
(1+m+ms)(1+m−ms)
(1−m+ms)(1−m−ms)

·

(5)

The Landau expansion consists in developing the free
energy in a power series of the order parameter, with
coefficients depending only on field variables, for stan-
dard analysis[12]. So, we perform a Legendre transform
on f(m,ms, T ) in order to replace the magnetization m
by the magnetic field H. That is,

Ψ(T, H, ms) = f (T, m, ms)−Hm, (6)

where m = m(T, H, ms) . The expansion takes the form,

Ψ(T, H, ms) =
n∑
i=0

Ψ2im
2i
s , (7)

where Ψj = Ψj(T, H), and we have considered terms up
to n = 6. The expansion of Ψ(T,H,ms) around ms = 0
describes the phase transition between a paramagnetic
phase, where ms = 0, and an antiferromagnetic phase,
where the order parameter ms is different from zero. As
we will discuss next, the expansion can also describe a
phase transition between two antiferromagnetic phases,
when the order parameter of both phases are close to zero.
In any case, the critical behavior of the model is deter-
mined by the behavior of the coefficients of the expansion
as a function of temperature, magnetic field and coupling
constants. In order to obtain explicit expressions for the
coefficients Ψj , we first note that they are proportional to
the coefficients of Hs:

Hs(T, H, ms) =
∂Ψ

∂ms

= 2Ψ2ms + 4Ψ4m
3
s + 6Ψ6m

5
s + . . . (8)

When we expand equation (4) in powers of ms we need
to consider also m = m(T,H,ms). However, equation (5)
shows that it is not possible to get an explicit expression
for m, so the following expansion for m, due to symmetry,
must be used:

m = α0 + α1m
2
s + α2m

4
s + α3m

6
s + . . . , (9)

where αi = αi(T, H). Substituting this last expression in
equation (5), we arrive at an expression of the form

H = ϕ0 + ϕ1m
2
s + ϕ2m

4
s + ϕ3m

6
s + . . . , (10)

where ϕi = ϕi(T, H). But as H, T and ms are the in-
dependent variables of the problem, we can write

ϕ0 = H , ϕ1 = ϕ2 = ϕ3 = ... = 0. (11)

Then, we have the desired equations for ϕi(T, H) that
define the coefficients αi in equation (9). Finally, using the
equations (4, 8) we obtain the proper coefficients of the
expansion. In the Appendix we give explicit expressions
for these coefficients, in terms of the model parameters,
on the critical plane, up to twelfth order. In Kincaid and
Cohen’s work [1], coefficients were included up to eighth
order, but left as implicit functions of the magnetization
expansion coefficients.

3 Phase diagram

The symmetry is broken when the sign of the coefficient
of second order in the Landau expansion, equation (7),
changes from a positive to a negative value, while all the
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other coefficients remain positive. Therefore, from equa-
tion (26) of the Appendix, Ψ2 = 0 gives

α0c =
√

1− tc, (12)

where tc = kBTc /J+ is the reduced critical temperature
and α0c = α0(Tc). If the last equation is introduced in the
first relation of equation (11), one defines the critical line
(see Eq. (25) of the Appendix):

hc = − ε− 1
ε+ 1

√
1− tc +

tc
2

ln
1 +
√

1− tc
1−
√

1− tc
, (13)

where we have defined the reduced field hc = Hc / J+

and the interaction ratio ε = JF / JA . The Néel temper-
ature is defined for hc = 0 . Then, in this case tN = 1, or
kBTN = J+.

It must be stressed that usually a point (hc, tc) de-
fined by equation (13) is a true critical point, when all the
other higher order coefficients Ψi(tc, hc) , i ≥ 4 are posi-
tive. Therefore, it is interesting to investigate the sign of
these coefficients. For instance, the fourth order coefficient
Ψ4 is

Ψ4 =
J+

4t2c

(
ε tc − ε+

1
3

)
· (14)

When Ψ2 = 0 and Ψ4 = 0 , a tricritical point takes place
if the higher order coefficients Ψi, i ≥ 6, are all positive.
If this condition is satisfied, we can write

Ψ4 = 0 ⇒ tT = 1− 1
3ε
, (15)

where tT is the temperature of the tricritical point. In-
serting this temperature in equation (13) we find the cor-
responding tricritical field. Thus, for tc > tT , Ψ4 > 0 ,
and we have a continuous transition line. On the other
hand, if tc < tT , Ψ4 < 0 ,Ψ6 > 0, a first order transition
appears.

Let us now consider the next term in the expansion,
Ψ6, (see Eq. (35) in the Appendix). If the condition Ψ2 = 0
is taken into account, we have

Ψ6 =
J+

2t4c

[(
− ε

3

12
+
ε2

2
+
ε

4

)
t2c +

(
ε3

6
− 5ε2

4
+

1
12

)
tc

− ε
3

12
+

3ε2

4
− ε

4
− 1

60

]
· (16)

Substituting in this equation tc by tT we obtain

[Ψ6]tT =
J+(

1− 1
3ε

)4 ( ε

27
− 1

45

)
· (17)

Therefore, if Ψ2 = Ψ4 = 0, [Ψ6]tT = 0 for ε = 3/5. Thus, at
ε = 3

5 , we have the appearance of a higher order critical
point [1], which separates two different types of critical
behavior: for ε > 3

5 , the phase diagram exhibits a contin-
uous transition line and a first order transition line, which
meet at a tricritical point. On the other hand, for ε < 3

5 ,
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Fig. 1. Phase diagram in the plane h versus t for ε = 0.8. Full
line, continuous phase transitions and dotted line, first order
phase transitions. AF and P are the antiferromagnetic and
paramagnetic phases, respectively. A is a tricritical point.

the tricritical point is decomposed into a critical and a
bicritical endpoints.

Let us now compare results from the numerical solu-
tions of the full equations and predictions from the coef-
ficients of the Landau expansion. Figures 1 and 2 show
phase diagrams for ε = 0.80 and ε = 0.50, respectively,
in which the coexistence lines were obtained numerically,
by finding the minima of the free energy for fixed values
of ε, t and h. For instance, from equations (4, 5), and tak-
ing Hs = 0, we can write the equations for the sublattice
magnetizations:

mA = (ε+ 1)
(
h+

ε

ε+ 1
mB −

t

2
ln

1 +mB

1−mB

)
, (18)

mB = (ε+ 1)
(
h+

ε

ε+ 1
mA −

t

2
ln

1 +mA

1−mA

)
· (19)

For fixed values of ε , t and h, we determine the simulta-
neous solutions for the system of equations (18, 19). Then,
these solutions are inserted in equation (6) in order to find
the corresponding values of the free energy. We choose the
solution that gives the lowest value for the free energy. In
Figure 3, for comparison, we exhibit a plot of some Lan-
dau coefficients in the plane ε versus t. For example, the
line corresponding to Ψ4 = 0 divides the plane into regions
when Ψ4 > 0 and Ψ4 < 0. Besides, along all these curves
we have also put Ψ2 = 0 so that the Ψ4 = 0 describes the
tricritical line on that plane. Also, the crossing point of
the curves Ψ4 = 0 and Ψ6 = 0, with Ψ8 > 0, gives the
location of the multicritical point. For this point we have
ε∗ = 0.6, t∗ = 0.4444 and h∗ = 0.6141.

Figure 1 represents the phase diagram with a tricritical
point. At higher temperatures, in the ordered phase, if we
start to increase the field at fixed temperature, the stag-
gered magnetization ms decreases continuously to zero
into a paramagnetic phase, at the critical line. However,
increasing the field at low temperatures, we find a value
of the field for which a state with ms = 0 and ms 6= 0 are
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Fig. 2. The same legend as in Figure 1, but ε = 0.50. The inset
shows the first order transiton lines Γ and Λ. C is a critical
endpoint and B is the bicritical endpoint.
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Fig. 3. Behavior of some Landau coefficients as a function of
t and ε. Full line, Ψ4 = 0; dashed line, Ψ6 = 0; dotted line,
Ψ8 = 0. At these lines we also have Ψ2 = 0. We display regions
separating positive from negative values. X is a point for which
ε = 0.62.

simultaneous minima of the free energy. In this case we
find an ordinary first order transition point, where a para-
magnetic state coexists with an antiferromagnetic state.
This is represented in Figure 1 by the dotted line, and
corresponds to Ψ2 > 0, Ψ4 < 0 and Ψ6 > 0, as can be seen
in Figure 3.

In Figure 2 we observe two different first order transi-
tion lines. On the Γ line, paramagnetic and antiferromag-
netic phases coexist, whereas on the Λ-line two ordered
antiferromagnetic ordered phases coexist. In terms of the
expansion coefficients (see Fig. 3), the critical line meets
the Λ-line, at the critical endpoint C, somewhere inside
the Ψ6 < 0 region (with Ψ2 = 0, Ψ4 > 0), as seen in Fig-
ure 3. Continuations of the Γ -line (Ψ2 > 0, Ψ4 > 0, Ψ6 < 0,
Ψ8 > 0) and of the Λ line (Ψ2 < 0, Ψ4 > 0, Ψ6 < 0 and
Ψ8 > 0), lie outside the ε − t critical plane exhibited in
Figure 3.

Because the more complex behaviour occurs in a small
region of the phase diagram, a good check consists in
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Fig. 4. The same legend as in Figure 1, but ε = 0.62. Point 1
is a tricritical point and point 2 is on the critical line, very near
the tricritical point. Just below point 2, in AF phase, we have
Ψ2 < 0, Ψ4 > 0, Ψ6 < 0 and Ψ8 > 0.

analysing the slope of the phase boundary at the tricritical
point, given by

dhT
dtT

=
−1

(ε+ 1)
√

1− tT
+

1
2

ln
1 +
√

1− tT
1−
√

1− tT
,

for t > tT , which should agree with that found numerically
at the first order transition line, for t < tT [13,14].

Although the topology of the phase diagram should be
the same as that exhibited in Figure 1, where ε = 0.8, for
any ε > ε∗, we must be careful in predicting the critical
behavior based only on the signs of the Landau coeffi-
cients. In Figure 4, we plot the phase diagram for the
value ε = 0.62. The point 1 in this figure is really a tricrit-
ical point: the right and left slopes of the phase boundary
are the same at this point. However, let us consider the
point 2 on the critical line, which is very near the tricrit-
ical point, indicated also in Figure 3 by the letter X. It
can be seen that it lies in the region Ψ4 > 0, Ψ6 < 0 and
Ψ8 > 0 which could indicate the presence of a bicritical
endpoint.

Indeed, this analysis can be applied to any value of
ε in the range 0.6 < ε < 0.631. The value ε = 0.631 is
the largest that can be obtained satisfying the condition
Ψ6 < 0. Based only on the signs of the Landau expansion,
we would expect to find in the neighborhood of X a line
of first order transition points, as the line Λ in Figure 2.
However, a careful examination of the minima of the free
energy in this region did not support the presence of a
bicritical endpoint.

The original theory of Landau of phase transitions
was devised to explain continuous phase transitions to
the fourth order in the order parameter, but can be ex-
tended to take also account of the first order transitions
for very small values of the order parameter. For the ordi-
nary Ising model, the Landau expansion around its critical
point, renders all coefficients higher than second order pos-
itive, and the critical point is well defined without ambigu-
ity. However, when the coefficients exhibit different signs,
we must be careful in disregarding those we believe are
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irrelevant [15]. For instance, when we considered Figure 1,
for ε = 0.8, the tricritical point appeared, and we had
Ψ2 = Ψ4 = 0 and Ψ6 > 0. However, as we can see in Fig-
ure 3, Ψ8 < 0. Indeed, in Figure 3 the Ψ8 > 0 condition
occupies a very small region of the plane ε versus t. The
same happens with the coefficients Ψ10 and Ψ12, which
also exhibit regions of positive and negative values. We
can conclude that, in the case of the tricritical point it is
sufficient to consider terms up to six order, whereas for
the case of the bicritical endpoint, terms of eighth order
must be taken into account. The inclusion of the coeffi-
cients Ψ10 and Ψ12 will have the only effect to produce
new local minima in the free energy, but for large values
of the order parameter ms. However, as we have seen in
the discussion of Figure 4, in some cases a full account
of the free energy is better than solely trust in the signs
of the corresponding Landau expansion.

As a final comment concerning the phase diagram of
the metamagnetic model, we call attention to the curious
maximum observed in the phase boundary, which is pre-
dicted by the mean field theory. For ε < 0.6959 the contin-
uous transition line has a maximum, that is, dhc/dtc = 0
(see Fig. 2). Thus, it is possible for a fixed value of the
magnetic field, to cross the phase boundary from a disor-
dered paramagnetic phase to an ordered antiferromagnetic
phase by just increasing the temperature. FeBr2 metam-
agnet [16,17] exhibits this type of phase diagram. Besides
this behavior, the FeBr2 metamagnet also displays other
interesting properties in its phase diagram as can be seen
in the recent neutron scattering studies [18,19].

4 Conclusion

We investigated the critical behavior of an Ising metam-
agnetic model in the mean field approximation. We ex-
panded the free energy of the model in powers of its order
parameter, and determined the Landau coefficients of the
model up to twelfth order. We plotted these coefficients
in the plane t (reduced temperature) versus ε (ratio of
exchange couplings), and based on the signs of these co-
efficients, we constructed the phase diagrams for different
values of ε. We showed that, for some range of values of
the parameter ε, a crude analysis of the signs of the coef-
ficients would not be sufficient to foresee the nature of the
critical point. In such cases, we need to do a careful inves-
tigation of the full free energy in order to find its minima
in the selected region.

This work was supported by the Brazilian agencies CNPq and
FINEP.

Appendix: The coefficients of the Landau
expansion

Let’s consider a general logarithmic term of equa-
tions (4, 5). Introducing the expansion form, equation (9),

we can write

ln(1+ams+bm) = ln(1+bα0)+A0ms+
(
− A2

0

2
+A1

)
m2
s

+
(
A3

0

6
−A0A1

)
m3
s +

(
A2 −

A2
1

2
− A4

0

4
+A2

0A1

)
m4
s

+
(
A5

0

5
+A0A

2
1 −A3

0A1 +A0A2

)
m5
s

+
(
A3−A1A2+

A3
1

3
+A2

0A2−
3A2

0A1

2
+A4

0A1−
A6

0

6

)
m6
s

+
(
−A0A3 + 2A0A1A2 −A3

0A2

+A0A
3
1 + 2A3

0A
2
1 −A5

0A1 +
A7

0

7

)
m7
s

+ C8m
8
s + C9m

9
s + C10m

10
s + C11m

11
s + . . . , (20)

where

C8 = A4 −A1A3 −
A2

2

2
+A2

0A3 +A2
1A2 − 3A2

0A1A2

+
A4

1

4
+ A4

0A2 + 2A2
0A

3
1 −

5A4
0A

2
1

2
+A6

0A1 −
A8

0

8
,

(21)

C9 =
A9

0

9
−A7

0A1 + 3A5
0A

2
1 −

10A3
0A

2
1

3
+A0A

4
1 −A5

0A2 + 4A3
0A1A2 − 3A0A

2
1A2

+A0A
2
2 −A3

0A3 + 2A0A1A3 −A0A4, (22)

C10 = −A
10
0

10
+A8

0A1 −
7A6

0A
2
1

2
+ 5A4

0A
3
1 −

5A2
0A

4
1

2

+
A5

1

5
+ A6

0A2 − 5A4
0A1A2 + 6A2

0A
2
1A2 −A3

1A2

− 3A2
0A

2
2

2
+A1A

2
2 +A4

0A3 − 3A2
0A1A3 +A2

1A3

−A2A3 +A2
0A4 −A1A4 +A5, (23)

C11 =
A11

0

11
−A9

0A1 + 4A7
0A

2
1 − 7A5

0A
3
1 + 5A3

0A
4
1

−A0A
5
1 −A7

0A2 + 6A5
0A1A2 − 10A3

0A
2
1A2

+ 4A0A
3
1A2 + 2A3

0A
2
2 − 3A0A1A

2
2 −A5

0A3

+ 4A3
0A1A3 − 3A0A

2
1A3 + 2A0A2A3

−A3
0A4 + 2A0A1A4 −A0A5. (24)

In these equations we have defined that a = ±1, b = ±1,
and

A0 =
a

1 + b α0
; Ai =

b αi
1 + b α0

·
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α5c =
−(ε+ 1)

√
1− t

3840t9
��

105ε8 − 1050ε7 + 4080ε6 − 6150ε5 − 3570ε4 + 16890ε3

+ 13680ε2 + 2790ε + 105
�
t4 +

�
− 420ε8 + 4830ε7 − 22650ε6 + 48310ε5 − 15690ε4

− 94150ε3 − 31150ε2 + 2610ε + 790
�
t3 +

�
630ε8 − 8190ε7 + 44680ε6 − 119482ε5

+ 104720ε4 + 156270ε3 − 4880ε2 − 12470ε + 2
�
t2 +

�
− 420ε8 + 6090ε7 − 37730ε6

+ 119434ε5 − 154330ε4 +−85490ε3 + 41450ε2 + 4510ε − 1034
�
t+ 105ε8

− 1680ε7 − 11620ε6 − 42112ε5 + 68990ε4 + 6000ε3 − 18380ε2 + 2080ε + 257
�
. (33)

Now, we collect all the terms in the expansions, equa-
tions (4, 5), and we use the conditions established in equa-
tion (11). The first relation, ϕ0 = H gives

h = − ε− 1
ε+ 1

α0 +
t

2
ln

1 + α0

1− α0
, (25)

where h = H/J+, t = kBT/J+ and ε = JF /JA. In this
way we obtain the expression for the coefficient of second
order

Ψ2 = −J+/2 +
1

4β

(
1

1 + α0
+

1
1− α0

)
· (26)

If we put Ψ2 = 0, the coefficient α0c at the criticality is
given by

α0c =
√

1− tc. (27)

The line of critical points (hc, tc), is obtained by putting
α0c in equation (25).

The other coefficients αi are calculated in a similar
manner and we use the expression for α0c obtained above.
For instance, the coefficient ϕ1 is given by

ϕ1 = J− α1 −
1

2β

×
[

α1

1 + α0
− 1

2
1

(1 + α0)2
+

α1

1− α0
+

1
2

1
(1 + α0)2

]
·

(28)

Putting ϕ1 = 0 we get,

α1c =
−(ε+ 1)

√
1− t

2t
· (29)

The other coefficients are:

α2c =
−(ε+ 1)

√
1− t

8t3
[(
−ε2 + 4ε+ 1

)
t+ ε2 − 6ε+ 1

]
,

(30)

α3c =
(ε+ 1)

√
1− t

48t5
[(
−3ε4 + 18ε3 − 30ε2 − 30ε− 3

)
t2

+
(
6ε4 − 46ε3 + 114ε2 + 30ε− 8

)
t− 3ε4

+28ε3 − 90ε2 + 12ε+ 5
]
, (31)

α4c =
(ε+ 1)

√
1− t

384t7
[(

15ε6 − 120ε5 + 339ε4 − 192ε3

− 723ε2 − 264ε− 15
)
t3 +

(
− 45ε6 + 430ε5

− 1567ε4 + 1924ε3 + 2165ε2 + 46ε− 73
)
t2

+
(
45ε6 − 500ε5 + 2205ε4 − 3856ε3 − 1417ε2

+ 612ε+ 31
)
t− 15ε6 + 190ε5 − 977ε4 + 2148ε3

− 97ε2 − 322ε+ 33
]
, (32)

See equation (33) above.

Finally, with these coefficients αi, and with help of
equations (4, 8) we can write the remaining coefficients in
the Landau expansion up to order 12:

Ψ4 =
J+

4t2

(
ε t− ε+

1
3

)
, (34)

Ψ6 =
J+

2 t4

[(
− ε3

12
+
ε2

2
+
ε

4

)
t2 +

(
ε3

6
− 5ε2

2
+

1
12

)
t

− ε3

12
+

3ε2

2
− ε

4
− 1

60

]
, (35)
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Ψ8 =
J+

1344t6
��

21ε5 − 168ε4 + 378ε3 + 504ε2 + 105ε
�
t3 +

�
− 63ε5 + 595ε4

− 1778ε3 − 966ε2 + 161ε+ 35
�
t2 +

�
63ε5 − 686ε4 + 2506ε3 + 168ε2 − 385ε

+ 14
�
t− 21ε5 + 259ε4 − 1106ε3 + 294ε2 + 119ε − 25

�
, (36)

Ψ10 =
J+

5760t8
�
7 + 645ε− 2685ε2 − 2055ε3 + 12405ε4 − 4497ε5

+ 705ε6 − 45ε7 +
�
− 177− 270ε+ 8925ε2 − 6240ε3 − 34695ε4

+ 14682ε5 − 2565ε6 + 180ε7
�
t+

�
129 − 1800ε − 6105ε2 + 23010ε3

+ 33615ε4 − 17484ε5 + 3465ε6 − 270ε7
�
t2 +

�
105 + 1110ε− 2745ε2

− 19800ε3 − 12585ε4 + 8910ε5 − 2055ε6 + 180ε7
�
t3 +

�
315ε

+ 2610ε2 + 5085ε3 + 1260ε4 − 1611ε5 + 450ε6 − 45ε7
�
t4
�
, (37)

Ψ12 =
J+

253440t10

��
2833− 14267ε − 118140ε2 + 534820ε3 + 52030ε4

− 1563738ε5 + 782452ε6 − 180620ε7 + 21945ε8 − 1155ε9 +
�
− 4224

+ 101871ε − 17160ε2 − 1923900ε3 + 1759560ε4 + 5081274ε5 − 3009336ε6

+ 768900ε7 − 101640ε8 + 5775ε9
�
t+

�
− 7986− 98406ε + 694320ε2 + 1702800ε3

− 5600100ε4 − 5964684ε5 + 4473216ε6 − 1288320ε7 + 187110ε8

− 11550ε9
�
t2 +

�
7832 − 61138ε − 696300ε2 + 624800ε3 + 6174740ε4

+ 2876148ε5 − 3171652ε6 + 1057760ε7 − 170940ε8 + 11550ε9
�
t3 +

�
3465

+ 61545ε + 8580ε2 − 1376100ε3 − 2827770ε4 − 368610ε5 + 1048740ε6

− 423060ε7 + 77385ε8 − 5775ε9
�
t4 +

�
10395ε + 128700ε2 + 437580ε3

+ 441540ε4 − 60390ε5 − 123420ε6 + 65340ε7 − 13860ε8 + 1155ε9
�
t5
�
. (38)

See equations (36, 37, 38) above.
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